An Improved Artificial Immune System-Based Network Intrusion Detection by Using Rough Set
نویسندگان
چکیده
With the increasing worldwide network attacks, intrusion detection (ID) has become a popular research topic in last decade. Several artificial intelligence techniques such as neural networks and fuzzy logic have been applied in ID. The results are varied. The intrusion detection accuracy is the main focus for intrusion detection systems (IDS). Most research activities in the area aiming to improve the ID accuracy. In this paper, an artificial immune system (AIS) based network intrusion detection scheme is proposed. An optimized feature selection using Rough Set (RS) theory is defined. The complexity issue is addressed in the design of the algorithms. The scheme is tested on the widely used KDD CUP 99 dataset. The result shows that the proposed scheme outperforms other schemes in detection accuracy.
منابع مشابه
A Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملIntrusion Detection Using Modern Techniques: Integration of Genetic Algorithms and Rough Set with Neural Nets
Intrusion detection system (IDS) is now becoming an integral part of the network security infrastructure. Data mining tools are widely used for developing an IDS. However, this requires an ability to find the mapping from the input space to the output space with the help of available data. Rough sets and neural networks are the best known data mining tools to analyze data and help solve this pr...
متن کاملBeeID: intrusion detection in AODV-based MANETs using artificial Bee colony and negative selection algorithms
Mobile ad hoc networks (MANETs) are multi-hop wireless networks of mobile nodes constructed dynamically without the use of any fixed network infrastructure. Due to inherent characteristics of these networks, malicious nodes can easily disrupt the routing process. A traditional approach to detect such malicious network activities is to build a profile of the normal network traffic, and then iden...
متن کاملThe Integrated Artificial Immune Intrusion Detection Model Based on Decision-theoretic Rough Set
The intrusion detection methods used in the industrial control network generally have a higher false positive rate. Considering this issue and improving the detection performance of intrusion behaviors, an integrated artificial immune intrusion detection model based on decisiontheoretic rough set was proposed in this paper. Firstly, by the approach of decision-theoretic rough set attributes red...
متن کاملA thesis submitted in fulfilment of requirements for the degree of MASTER OF ENGINEERING
With computer network’s fast penetration into our life, various types of malicious attacks and service abuses increase dramatically. Network security has become one of the big challenges in the modern networks. Intrusion Detection (ID) is one of the active branches in network security research field. Many technologies, such as neural networks, fuzzy logic and genetic algorithms have been applie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013